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Centrifugal space-charge force of an electron beam in a focusing element

Bruce E. Carlsten
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 27 January 1997!

The centrifugal space-charge force of a continuous electron beam, focused in a lens of an accelerator, is
numerically calculated. As in the case of an electron beam in a dipole magnetic field, the effect on the
transverse motion of the particles from the centrifugal space-charge force in a focusing element tends to cancel
the effect from the potential depression of the beam; however, the cancellation is not exact, as it is for the
dipole case. The centrifugal space-charge force in the focusing case arises from a nonzero axial derivative of
the transverse vector potential due to the beam’s space charge, as the beam is transversely accelerated in the
focusing element. The transverse equation of motion for particles in the beam is used to quantify the partial
cancellation of the nonlinear transverse acceleration from the centrifugal space-charge force and from the
beam’s potential depression, for focusing both with a magnetic quadrupole lens and a solenoid.
@S1063-651X~97!51505-4#

PACS number~s!: 29.27.Bd, 03.50.De, 41.75.Ht
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In 1986, Talman@1# described a previously unconsidere
space-charge force that exists if a continuous beam is
flected in a uniform dipole magnetic field. This space-cha
force, called the centrifugal space-charge force~CSCF!, does
not exhibit the usual relativistic cancellation, and there w
concern that it would lead to a substantial amount of be
quality degradation, particularly for circular machines
high energy. However, a subsequent investigation of this
fect led Lee in 1990 to observe that the effect from the c
trifugal space-charge force was primarily to cancel the eff
from the potential depression of the beam@2#; and, in fact,
less beam quality degradation results than if this force
not exist. Careful expansions of the transverse equatio
motion demonstrating this cancellation can be found in R
@2# and@3#. The cancellation arises because the radial der
tive of the vector potential in the direction of motion due
the beam’s space charge leads to a term that depends o
deviation of a particle’s potential from the potential at t
center of the beam.

Some amount of cancellation between the CSCF and
beam’s potential depression is not surprising. Naively, o
would expect that a particle’s bending radius in a unifo
dipole field depends only on that particle’s kinetic energ
however, there is a certain amount of momentum stored
the Coulomb space-charge fields surrounding a bunch, w
also must be bent through some interaction with the parti
themselves. The exact first order~in terms of the beam radiu
divided by the radius of curvature! cancellation of the trans
verse forces for all particles is surprising, and tells us that
amount of inertia in the Coulomb fields that each parti
must overcome is equal to the potential depression of
particle divided by the speed of light squared~to first order!.
As a result, all particles in a beam are deflected by a dip
magnetic field as if they have the potential associated w
the beam pipe wall, and not the depressed potential ass
ated with their kinetic energy. This effect was recently ve
fied experimentally by comparing the deflection of a 6-Me
300-A electron beam with that of a 4-kA electron beam@4#.

When a very high-brightness electron beam is within
focusing element along an accelerator, the beam quality
potentially degrade, resulting from the energy variation
551063-651X/97/55~5!/4893~4!/$10.00
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particles which arises from the potential depression of
beam. For example, within an ideal quadrupole~which has
linear transverse forces!, particles with slightly lower energy
~those at the center of the beam! ‘‘see’’ a shorter focal length
than particles with slightly higher energy~those at the radia
edge of the beam!, resulting in an axially smeared out focu
and an emittance growth of the beam. There is, howeve
focusing analog of the CSCF, which arises from a nonz
axial derivative of the transverse vector potential as the be
is transversely accelerated. The resulting azimuthal magn
field tends to reduce the focal length variation and result
beam quality degradation. Because the transverse acce
tion in a focusing element is very nearly proportional
transverse position, the cancellation between the poten
depression and the focusing CSCF is not exact to first or

For a solenoid, the focusing CSCF will actually lead to
increase in the beam’s emittance, instead of decreasing
emittance growth as in a quadrupole. This is because o
additional effect from the beam’s self-diamagnetic ax
field, which itself counters the effect of the beam’s potent
depression. Within a solenoid, the electron beam rotates
muthally, leading to a counteraxial magnetic field in the ce
ter of the beam. This reduced axial field leads to less a
muthal rotation of the beam~the reduction is more
pronounced at the center of the beam, and there is no re
tion at the radial edge of the beam!, and less radial focusing
force. For a uniform density electron beam, the decreas
focusing force is exactly the same as the decrease in
beam’s potential energy, and, in the absence of the focu
CSCF, the focal length from a solenoid is the same at
radii within the beam. Now the effect of the focusing CSC
is to create a variation in the focal length across the be
with a resulting emittance growth. We will now quantify~1!
the focusing CSCF and~2! the nonlinearity introduced in the
radial equation of motion by it, for solenoidal focusing of
uniform density beam.

The radial equation of motion of a particle within th
central part of an ideal solenoid~where the magnetic field
from the solenoid is purely axial and uniform, and where
are additionally assuming that the geometry is axisymmet!
is given by
R4893 © 1997 The American Physical Society
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m
d~g ṙ !

dt
5eEr1e~nuBdia2nzBu!1enuBext1

gmnu
2

r
,

~1!

whereg is the relativistic mass factor,Bext is the axial mag-
netic field from the solenoid~including the diamagnetic ef
fect from the image currents in the beampipe!, Bdia is the
induced diamagnetic axial magnetic field from the beam c
rent opposing the solenoidal field,Bu is the azimuthal mag-
netic field from the space charge, andEr is the radial electric
field from the space charge, all at the position of the parti
ande andm are the electronic charge and mass, respectiv
Most of these terms are mostly linear with radius—the pa
of the terms that are not lead to the variation in focal lengt
The nzBu term mostly cancelsEr ~to order 1/g2!, but also
includes the focusing CSCF. There is also a potential dep
sion within the beam~a variation ofg that is a function of the
radius!. Our approach will be to expand the radial equati
of motion in terms of the variation ofg, to lowest order, in
order to quantify the focal length variation.

The azimuthal velocity is found by application of Busch
theorem@5# ~the conservation of angular momentum!:

nu52
e

gmrE0
r

~Bext1Bdia!r dr . ~2!

The relativistic mass factor is given byg(r )5ga1g1(r ),
wherega is the mass factor along the axis~r50!. For a beam
of uniform densityr0,

g15
e

4mc2
r0
«
r 2,

~3!

Bdia

B
52S gb

ga
2

g1

ga
D ,

where we have now introducedgb as the difference in the
relativistic mass factor between the center and the ra
edge of the beam, andB as the total axial magnetic field
This leads to

B5BaS 11
g1

ga
D , g5gaS 11

g1

ga
D , ~4!

whereBa is the axial field at the axis of symmetry. Note th
g1 depends quadratically on the beam radius, and is posi

The beam-induced azimuthal magnetic field in Eq.~1! is
given in terms of the vector potential by

Bu5
]

]z
Ar2

1

r

]

]r
rAz . ~5!

Note that

f5E r

4p«r
drW, AW 5E m

jW

4pr
drW, ~6!

wheref is the scalar potential,jW is the current density, and
the integrals are over all space. We will assume that
beam flow is laminar, and the current density is
r-

,
y.
s
s.

s-

al

e.

e

jW5rbc~ ẑ cosC1 r̂ sinC!, ~7!

where the angleC is given by

C5
r

r b

drb
dz

, ~8!

r b is the beam edge radius, anddrb /dz is the angle of di-
vergence of the beam edge. Note that the difference betw
the axial vector potential and~b/c!f is on the order ofC2,
but the radial vector potential scales as (b/c)f) timesC. At
this point, we will assume that the angle of the beam c
vergence is much smaller than 1/g ~if this is not true, an-
other, although smaller term, needs to be kept in the follo
ing derivation!. This means that the space-charge elec
field and the space-charge magnetic field from the axial v
tor potential still cancel to order 1/g2 to first order inC, and
the additional space-charge force introduced by the ra
vector potential adds in a force of orderC that is not can-
celed by other fields.

The vector potential for a uniform density beam at a
cationy along the vertical axis is given by

AW 5E
2z

z

dzE
0

2p

duE
0

r b
m

3
I ~sinu sinC,0,cosC!

4p2r b
2Az21r 21y222ry sinu

r drW ~9!

where additionally the beam radius is given as a function
axial position from the observer locationz by

r b5r o1z tanC, ~10!

and wherer o is the beam radius at the observer location.
As is well known @6#, the integral for the axial vecto

potential diverges as the limit of integrationz approaches
infinity—this, however, is not the case for the radial vec
potential, which quickly reaches a maximum. This is eas
understood by observing that for large axial displaceme
the radical part of the denominator in Eq.~9! becomes
Az2 , and the sinu term in the numerator then integrates
zero ~far from the observer location, the different radial v
locities of the beam current density average to zero!.

We can normalize the radial vector potential to the sca
potential at the beam radiusfb5gbmc2/e,

Ar5
dr

dz
x

b

c
fb5

dr

dz
xm

I

4p
, ~11!

where nowx is a parameter between zero and unity, depe
ing on the beam geometry, divergence, and position wit
the beam, andI is current.

In Fig. 1 we plotx(dr/dz) at the beam radius versus th
axial limit of integration, normalized to the beam radius, f
a divergence of 10 mrad. We see that the radial vector
tential does indeed quickly reach its asymptotic value~for an
axial limit of integration of about ten beam radii!, and that
x'0.5. In Fig. 2, we plot the asymptotic value o
x(dr/dz) as a function of radial position within the beam.
Fig. 3, we plot the asymptotic value ofx(dr/dz) at the beam
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radius as a function of beam edge divergence, and see
x'0.5 for a wide range of beam edge divergences. Fr
Figs. 2 and 3, we see thatx5(1328r /r b)/10 is a fair ap-
proximation within the beam (r,r b).

For small rates of change of the beam edge diverege
we find, from Eqs.~5! and ~11!,

Bu52
b

c

1

r

]

]r
~rf!1

b

c S 1328r /r b
10 D d2rdz2

fb . ~12!

The first term on the right-hand side leads to the 1/g2 can-
cellation of the radial space-charge force. The second ter
the focusing CSCF. Note that it vanishes if the beam conv
gence angle is a constant~if the beam is not being focused o
defocused!.

At this point, we have written out all the terms of th
right-hand side of the radial equation of motion, and we c
evaluate the nonlinear terms. For finding the radial dep
dence of the focusing focal length, we want the radial div
gence instead of the radial velocity, so we still need
change the variable of differentiation on the left-hand side
the radial equation of motion. Using dots to refer to tim
derivatives and primes to refer to axial derivatives, we ha

FIG. 1. Radial vector potential at the beam edge~normalized to
the beam potential energy depression! vs the axial length of inte-
gration, for an edge divergence of 0.01 rad.

FIG. 2. Radial vector potential~normalized to the beam poten
tial energy depression! vs radial position within the beam, for a
edge divergence of 0.01 rad.
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eEr
mc2
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and

ṙ5r 8naS 11
n~r !

na
D ,

~14!

r̈5r 9nz
2~r !5r 9na

2S 112
n~r !

na
D ,

where we define an average axial velocityna and a relative
axial velocityn to benz(r )5na1n(r ). After calculating the
focusing and the centrifugal acceleration terms, and com
ing the r 9 terms and dividing through by a factor ofg, Eq.
~1! becomes

r 9mna
2S 112

n

na
1

gb

ga
S 1328r /r b

10 D D
5
eEr
g3 2

e2Ba
2r

4g2m S 11
g1

2ga
D S 11

3g1

2ga
D2

ena
2Err 8

2

c2g
. ~15!

Note that the radial dependence of the magnetic field te
and the mass factor will cancel in the second term on
right side of the equation~to first order ing1 /ga!, leading to
a focusing term that is purely linear in radius. We will als
assume at this point that the electric field terms can be
nored~either because of a small enough beam current or h
enough energy and small beam convergence!, and that the
beam is at a high enough energy that the deviation in a
velocity can be ignored. Then, using the definition of t
focal length of a solenoid for the beam near the axis,

f5
rga

2m2na
2

le2Ba
2 , ~16!

the radial divergence after a lengthl becomes

r 852
r

f S 12
gb

ga
S 1328r /r b

10 D D ~solenoid!. ~17!

The constant term within the nested parentheses makes

FIG. 3. Radial vector potential at the beam edge~normalized to
the beam potential energy depression! vs edge divergence.
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average focal length longer than one would expect from
considering the potential depression of the beam, in ag
ment with the concepts introduced from the CSCF in a
pole magnetic field. In addition, the term linear inr within
the parentheses introduces a focal length variation tra
versely across the beam.

If a series of quadrupoles giving net focusing in bo
transverse planes is used, the effect from the focusing C
in a single plane adds and subtracts as the beam is focus
defocused. The net effect is then due to the net focusing,
the transverse equation of motion becomes~for equal net
focal lengths in both transverse directions!

r 852
r

f S 12
g1~r !

ga
2

gb

ga
S 1328r /r b

10 D D ~quadrupole!,

~18!

where now the focal lengthf is the net focal length at the
l

or
st
e-
i-

s-

F
or

nd

center of the beam from the series of quadrupole lenses
in the case for a solenoid, the constant term introduced
the focusing CSCF will increase the average focal length
the lens. The linear term will now tend to counter the var
tion in focal lengths introduced by the potential depress
term,g1 /ga (5gbr

2/gar b
2 for a round beam!. Note that the

variation in focal lengths is on the order of the potent
depression divided by the beam potential for both a solen
and a quadrupole lens. For a quadrupole lens, the variatio
focal lengths is reduced by more than half by the focus
CSCF, demonstrating a similar cancellation as in the dip
magnet case.
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