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Centrifugal space-charge force of an electron beam in a focusing element
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The centrifugal space-charge force of a continuous electron beam, focused in a lens of an accelerator, is
numerically calculated. As in the case of an electron beam in a dipole magnetic field, the effect on the
transverse motion of the particles from the centrifugal space-charge force in a focusing element tends to cancel
the effect from the potential depression of the beam; however, the cancellation is not exact, as it is for the
dipole case. The centrifugal space-charge force in the focusing case arises from a nonzero axial derivative of
the transverse vector potential due to the beam’s space charge, as the beam is transversely accelerated in the
focusing element. The transverse equation of motion for particles in the beam is used to quantify the partial
cancellation of the nonlinear transverse acceleration from the centrifugal space-charge force and from the
beam’s potential depression, for focusing both with a magnetic quadrupole lens and a solenoid.
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In 1986, Talmari1] described a previously unconsidered particles which arises from the potential depression of the
space-charge force that exists if a continuous beam is ddseam. For example, within an ideal quadrup@Mhich has
flected in a uniform dipole magnetic field. This space-chargdinear transverse forcgsparticles with slightly lower energy
force, called the centrifugal space-charge fQi€8CH, does (those at the center of the beptsee” a shorter focal length
not exhibit the usual relativistic cancellation, and there washan particles with slightly higher enerdgthose at the radial
concern that it would lead to a substantial amount of beanedge of the beajnresulting in an axially smeared out focus,
quality degradation, particularly for circular machines atand an emittance growth of the beam. There is, however, a
high energy. However, a subsequent investigation of this effocusing analog of the CSCF, which arises from a nonzero
fect led Lee in 1990 to observe that the effect from the cenaxial derivative of the transverse vector potential as the beam
trifugal space-charge force was primarily to cancel the effects transversely accelerated. The resulting azimuthal magnetic
from the potential depression of the be@®}; and, in fact, field tends to reduce the focal length variation and resulting
less beam quality degradation results than if this force didbeam quality degradation. Because the transverse accelera-
not exist. Careful expansions of the transverse equation dfon in a focusing element is very nearly proportional to
motion demonstrating this cancellation can be found in Refstransverse position, the cancellation between the potential
[2] and[3]. The cancellation arises because the radial derivadepression and the focusing CSCF is not exact to first order.
tive of the vector potential in the direction of motion due to  For a solenoid, the focusing CSCF will actually lead to an
the beam’s space charge leads to a term that depends on tinerease in the beam’s emittance, instead of decreasing the
deviation of a particle’s potential from the potential at theemittance growth as in a quadrupole. This is because of an
center of the beam. additional effect from the beam’s self-diamagnetic axial

Some amount of cancellation between the CSCF and thfield, which itself counters the effect of the beam’s potential
beam’s potential depression is not surprising. Naively, onalepression. Within a solenoid, the electron beam rotates azi-
would expect that a particle’s bending radius in a uniformmuthally, leading to a counteraxial magnetic field in the cen-
dipole field depends only on that particle’s kinetic energy;ter of the beam. This reduced axial field leads to less azi-
however, there is a certain amount of momentum stored imuthal rotation of the beam(the reduction is more
the Coulomb space-charge fields surrounding a bunch, whicpronounced at the center of the beam, and there is no reduc-
also must be bent through some interaction with the particlefon at the radial edge of the beganand less radial focusing
themselves. The exact first ord@n terms of the beam radius force. For a uniform density electron beam, the decrease in
divided by the radius of curvatureancellation of the trans- focusing force is exactly the same as the decrease in the
verse forces for all particles is surprising, and tells us that th&@eam’s potential energy, and, in the absence of the focusing
amount of inertia in the Coulomb fields that each particleCSCF, the focal length from a solenoid is the same at all
must overcome is equal to the potential depression of thatadii within the beam. Now the effect of the focusing CSCF
particle divided by the speed of light squard first ordej.  is to create a variation in the focal length across the beam,
As a result, all particles in a beam are deflected by a dipolevith a resulting emittance growth. We will now quantify)
magnetic field as if they have the potential associated witlihe focusing CSCF an@) the nonlinearity introduced in the
the beam pipe wall, and not the depressed potential assoaiadial equation of motion by it, for solenoidal focusing of a
ated with their kinetic energy. This effect was recently veri-uniform density beam.
fied experimentally by comparing the deflection of a 6-MeV, The radial equation of motion of a particle within the
300-A electron beam with that of a 4-kA electron bepth central part of an ideal solenoigvhere the magnetic field

When a very high-brightness electron beam is within afrom the solenoid is purely axial and uniform, and where we
focusing element along an accelerator, the beam quality caare additionally assuming that the geometry is axisymmetric
potentially degrade, resulting from the energy variation ofis given by
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(1) where the anglal is given by

wherey is the relativistic mass factoBe, is the axial mag- _ rdr ®)

netic field from the solenoidincluding the diamagnetic ef- r, dz’

fect from the image currents in the beampipBg, is the

induced diamagnetic axial magnetic field from the beam cur!p is the beam edge radius, add,/dz is the angle of di-
rent opposing the solenoidal fielB,, is the azimuthal mag- Vergence of the beam edge. Note that the difference between
netic field from the space charge, aidis the radial electric the axial vector potential angB/c)¢ is on the order of¥’?,

field from the space charge, all at the position of the particlebut the radial vector potential scales #¢) ¢) timesW. At
ande andm are the electronic charge and mass, respectivelythis point, we will assume that the angle of the beam con-
Most of these terms are mostly linear with radius—the partyergence is much smaller thanyl(if this is not true, an-

of the terms that are not lead to the variation in focal lengthsother, although smaller term, needs to be kept in the follow-
The v,B, term mostly cancel&, (to order 14?), but also ing derivation. This means that the _space—charge glectric
includes the focusing CSCF. There is also a potential depredield and the space-charge magnetic field from the axial vec-
sion within the beanta variation ofy that is a function of the tor potential still cancel to order 47 to first order in¥, and
radiug. Our approach will be to expand the radial equationthe additional space-charge force introduced by the radial
of motion in terms of the variation of, to lowest order, in  Vector potential adds in a force of orddr that is not can-

order to quantify the focal length variation. celed by other fields. . _
The azimuthal velocity is found by application of Busch’s ~ The vector potential for a uniform density beam at a lo-
theorem[5] (the conservation of angular momentum cationy along the vertical axis is given by
e r - z 2 Iy
wz—WJO(BexﬁBdia)rdr. @ A=f_zd€f0 dﬁfo m

-

The relativistic mass factor is given by(r)=y,+ vy4(r), | (sing sin¥",0,cosV") d

X r
wherevy, is the mass factor along the axis=0). For a beam Am?re\ 2+ r2+y2—2ry sing
of uniform densitypy,

(€)

where additionally the beam radius is given as a function of

= e po 2 axial position from the observer locatignby
1— - [}
amce ¢
3 rp=ro+¢ tanv, (10
%: _(ﬁ_ ﬂ), and wherer, is the beam radius at the observer location.
B Ya 7Ya As is well known[6], the integral for the axial vector

) ) . potential diverges as the limit of integratianapproaches
where we have now introduceg, as the difference in the ininity_this, however, is not the case for the radial vector

relativistic mass factor between the center and the radi%otential, which quickly reaches a maximum. This is easily

edge of the beam, anfl as the total axial magnetic field. ngerstood by observing that for large axial displacements,

This leads to the radical part of the denominator in E() becomes
JZZ , and the sift term in the numerator then integrates to

’ (4)  zero(far from the observer location, the different radial ve-
locities of the beam current density average to zero

. N . We can normalize the radial vector potential to the scalar
whereB, is the axial field at the axis of symmetry. Note that potential at the beam radiug, = y,mc/e,

v, depends quadratically on the beam radius, and is positive.

1+ 2
y

a

1+ 2
y

a

B=B, v Y= Ya

The beam-induced azimuthal magnetic field in EL).is dr B dr |
given in terms of the vector potential by A=gzXe P gz X a7 (13)
Bg:i - 1 rA,. (5)  Where nowy is a parameter between zero and unity, depend-
Jz ror ing on the beam geometry, divergence, and position within
the beam, andl is current.
Note that In Fig. 1 we ploty(dr/dz) at the beam radius versus the
> axial limit of integration, normalized to the beam radius, for
¢=f L A=J' BN di 6 @ divergence of 10 mrad. We see that the radial vector po-
Aqer ' B g 0 tential does indeed quickly reach its asymptotic vafoe an

R axial limit of integration of about ten beam ragdiand that
where ¢ is the scalar potentiaj, is the current density, and x~0.5. In Fig. 2, we plot the asymptotic value of
the integrals are over all space. We will assume that the(dr/dz) as a function of radial position within the beam. In
beam flow is laminar, and the current density is Fig. 3, we plot the asymptotic value g{dr/dz) at the beam
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FIG. 1. Radial vector potential at the beam edgermalized to FIG. 3. Radial vector potential at the beam edgermalized to

the beam potential energy depression the axial length of inte- the beam potential energy depressiua edge divergence.
gration, for an edge divergence of 0.01 rad.

d . .dy . eEk. .
radius as a function of beam edge divergence, and see that FTRAInLEr T WVZJF i (13
x~0.5 for a wide range of beam edge divergences. From
Figs. 2 and 3, we see thgt=(13—8r/r,)/10 is a fair ap- and
proximation within the beamr&ry).
For small rates of change of the beam edge diveregence, . , v(r)
we find, from Egs(5) and(11), F=rivg| 1+ )
: (14
19 13—8r/ry,)\ d?r
Bo=— g T e g Tb a2 % 12 F=r"v5(r)=r"vi| 1+2 V(:)),

The first term on the right-hand side leads to thg?l¢an-  where we define an average axial velodityand a relative
cellation of the radial space-charge force. The second term isxial velocity v to bev,(r)=v,+ v(r). After calculating the
the focusing CSCF. Note that it vanishes if the beam converfocusing and the centrifugal acceleration terms, and combin-
gence angle is a constaiftthe beam is not being focused or ing ther” terms and dividing through by a factor of Eq.
defocused (1) becomes

At this point, we have written out all the terms of the

right-hand side of the radial equation of motion, and we can , v Y ( 13—8r/rb))

r mv§(1+2—+—

evaluate the nonlinear terms. For finding the radial depen- Ve Ya 10

dence of the focusing focal length, we want the radial diver-

gence instead of the radial velocity, so we still need to ] = ezBir Y1 3y ev;Err’2
change the variable of differentiation on the left-hand side of =~ 73~ 2,7m 1+ 27, 1 2va] 3y (15)

the radial equation of motion. Using dots to refer to time

derivatives and primes to refer to axial derivatives, we haveNote that the radial dependence of the magnetic field terms
and the mass factor will cancel in the second term on the
right side of the equatiofto first order iny; /y,), leading to

0.005 R P e I a focusing term that is purely linear in radius. We will also
C 1 assume at this point that the electric field terms can be ig-
0.004 - ] nored(either because of a small enough beam current or high
<& . ] enough energy and small beam converggnaad that the
S 0.003 - ] beam is at a high enough energy that the deviation in axial
= s / 3 velocity can be ignored. Then, using the definition of the
::g 0.002 | focal length of a solenoid for the beam near the axis,
0.001 | ] B ryam’ v} (16
i ] le’BZ '
o I 1 TR
Y 02 04 C>6 0.8 1 1.2 the radial divergence after a lendtibecomes
1742
b
, r 1 Yp [ 13—8r/ry, leno 1
r=—-—-|1-—|—«— solenoid.
FIG. 2. Radial vector potentidhormalized to the beam poten- f Ya 10 ( J (7

tial energy depressionvs radial position within the beam, for an
edge divergence of 0.01 rad. The constant term within the nested parentheses makes the
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average focal length longer than one would expect from justenter of the beam from the series of quadrupole lenses. As
considering the potential depression of the beam, in agredn the case for a solenoid, the constant term introduced by
ment with the concepts introduced from the CSCF in a dithe focusing CSCF will increase the average focal length of
pole magnetic field. In addition, the term linearrinwithin  the lens. The linear term will now tend to counter the varia-
the parentheses introduces a focal length variation transion in focal lengths introduced by the potential depression
versely across the beam. term, y1/va (= yr?/ vari for a round beam Note that the

If a series of quadrupoles giving net focusing in bothyariation in focal lengths is on the order of the potential

transverse planes is used, the effect from the focusing CSCeesion divided by the beam potential for both a solenoid
in a single plane adds and subtracts as the beam is focused

. g d a quadrupole lens. For a quadrupole lens, the variation in
defocused. The net effect is then due to the net focusing, a 9 s d P

. . cal lengths is reduced by more than half by the focusing
the transverse equation of motion becontfs equal net . 7 . ) _
) L CSCF, demonstrating a similar cancellation as in the dipole
focal lengths in both transverse directipns

magnet case.
r vi(r) Yo [13—8r/ry .
r'r=——-|1- 5 y— 10 (quadrupolg, This work was supported by funds from the Laboratory-
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